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COMPUTER PROGRAM FOR CALCULATING ISOTHERMAL,
TURBULENT JET MIXING OF TWO GASES
by Leo F. Donovan and Carroll A. Todd

Lewis Research Center

SUMMARY

Fluid mechanics is perhaps the most significant area in the investigation of the
coaxial-flow, gas-core nuclear reactor. This report describes a computer program for
solving a simplified model of the turbulent mixing that occurs between a central fuel jet
and a surrounding, faster-moving coaxial stream of propellant. As such, this report
constitutes a step toward a better understanding of this aspect of the gas-core nuclear
rocket. ILocal values of time-averaged velocity and the mass fraction of fuel can be
calculated for a reactor in less than a minute on the IBM 7094.

The von Mises transformation was used to convert the axisymmetric forms of the
isothermal boundary layer momentum and diffusion equations to forms amenable to nu-
merical solution. The effects of confining walls were not considered. The program can
solve problems in which the initial velocities and densities of the two streams differ
greatly, by using expressions for eddy viscosity that vary radially as well as axially.

The effects of initial coaxial-stream- to jet-velocity and density ratios on velocity
and mass fraction profiles are shown. An unspecified reference density occurs in the
eddy viscosity formulation; the influences on velocity and mass fraction profiles of
several choices for the reference density are illustrated. Radial and axial variations of
eddy viscosity and the product of density and eddy viscosity are also given. Estimates
are made of the effects of initial velocity ratio and initial density ratio on the mass of the
major jet component contained within a given volume. The maximum and minimum
amounts that could be present are included for comparison.

INTRODUCTION

The concept of a coaxial-flow, gaseous nuclear reactor provides the motivation for
the work to be described in this report. A brief discussion of some of the features of
this concept will be helpful in understanding the relevance of turbulent jet mixing.



An important characteristic of rocket performance is specific impulse; specific
impulse is the thrust obtained per unit weight flow rate of propellant mixture expelled
from the engine. High specific impulse is desirable since less propellant will be required
to produce a given total impulse (i.e., integral of thrust over the operating time of the
reactor). Specific impulse is approximately proportional to the square root of the ratio
of exhaust temperature to molecular weight; thus, high temperatures and low molecular
weights are desirable. Chemical rocket performance is limited by the temperature to
which the heat of combustion will raise a given fuel-oxidizer combination; for example,
advanced hydrogen-oxygen rockets produce a specific impulse of about 450 seconds. The
great advantage of nuclear rockets is the high specific impulse that can be obtained by
using hydrogen as the propellant. Solid-core nuclear reactors, however, must operate
at temperatures that fuel-bearing materials can withstand and are thus limited to specific
impulses of about 1000 seconds.

Higher fuel temperatures are possible in the gas-core nuclear reactor since the fuel
is not supported on solid surfaces. Rather, a slowly moving gaseous fuel mass radiates
heat to a coflowing annular propellant stream. The initial ratio of propellant to fuel
velocity must be high in order to keep the loss of fuel as low as possible. With such a
reactor, specific impulses of 2000 to 3000 seconds may be possible. Use of nuclear fuel
and hydrogen propellant results in small initial propellant- to fuel-density ratios.

The gas-core nuclear reactor problem was made more amenable to solution by
dividing it into three major areas (ref. 1) (viz, nuclear aspects, radiant heat transfer,
and fluid mechanics). The goal is to recombine the separate parts into a meaningful
whole after each relevant process is understood. The first two areas have been discussed
in part elsewhere (refs. 2 and 3); fluid mechanics, including mass transfer, was con-
sidered in reference 4 and is treated in the present report. In reference 4 molecular
transport coefficients were retained, and eddy viscosity was assumed to be a function of
axial position raised to an arbitrary power which was determined by comparison with
data from a bromine-air experiment.

In the present analysis a modified Prandtl eddy viscosity was used along with the fact
that in turbulent jet mixing the molecular transport coefficients are negligible compared
with the turbulent transport coefficients. The equations governing the mixing are the con-
tinuity equation, the momentum equation, and the diffusion equation. Boundary layer as-
sumptions were used to simplify these equations. A sketch of the model analyzed is shown
in figure 1. The problem at hand differs from what has been solved before in that a large
initial coaxial-stream- to jet-velocity ratio is coupled with a small coaxial-stream- to
jet-density ratio, so that an appropriate formulation of the eddy viscosity is not known.

The problem was simplified for this report by eliminating the effect of confining
walls and considering a free jet. Most of the work in jet mixing has been done on free
jets, and the results (ref. 5) of these experiments and analyses can be used as a basis



for estimating eddy viscosity. Prandtl's postulate that eddy viscosity is proportional to
the product of half radius and maximum velocity difference has been shown to agree with
data in the far jet region, when density is constant and the initial coaxial-stream- to
jet-velocity ratio is small. However, there is little agreement on how this postulate
should be modified when density varies. Ting and Libby (ref. 6) have extended this
formulation to allow for density differences, but adequate experimental verification has
not been obtained. ‘

This report describes a computer program that has been developed for isothermal,
turbulent jet mixing of two gases. The program is capable of solving problems with
large initial velocity and density ratios without the restrictive assumption of constant
eddy viscosity. The effects of velocity and density ratios on the mean flow properties
are shown; also, the marked influences of the reference density, unspecified in the
Ting-Libby formulation, are illustrated.

ANALYSIS
Boundary Layer Equations, Initial and Boundary Conditions

The equations that are used to describe the isothermal, turbulent jet mixing of two
gases are the time-averaged continuity equation and boundary layer forms of the momen-
tum and diffusion equations. The von Mises transformation converts the momentum and
diffusion equations to forms that satisfy the continuity equation identically. Eddy
viscosity is specified empirically by a combination of Prandtl's constant density formu-
lation and a relation proposed by Ting and Libby (ref. 6).

For jet mixing at large Reynolds number, molecular transport is negligible com-
pared with turbulent transport and can be ignored. At low Mach number, density changes
result solely from mixing, and for a free jet the pressure is constant. Using capital
letters to denote dimensional quantities, the axisymmetric forms of the continuity,
momentum, and diffusion equations are as follows (ref. 5):

2 PUR)+ -2 (PVR) =0 (1)
X R
puU,.pyU_.1 9 [pprl @)
aX AR R IR R
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pydY,pyd¥_1 9 (PE pdY¥ (3)
X R R 2R SCt R

(Symbols are defined in appendix A.) The diffusion equation is written in terms of the
mass fraction of component 1, the major (or total) constituent of the initial jet. Itis
assumed that the turbulent momentum and mass fluxes can be represented as the product
of an eddy viscosity and the gradient of a time-averaged quantity. In addition, the
turbulent Schmidt number Sct is used to relate the eddy viscosities for momentum

and mass.
The initial and boundary conditions for the problem are as follows:

U=U]-,Y=Yj OSR<R]- X=0

(4)
U=U, Y=Y, R>R X=0
8U_g,v=0,%-0 R=0 X=z0 (5)
3R 3R
U-U, Y=Y, R=w X=0 (6)

These conditions may have to be modified when comparing computer results and experi-
mental data. If the wall thickness of the jet discharge tube is not small compared with
the tube diameter, the presence of a wall may significantly influence the early develop-
ment of the flow. Also, the jet and coaxial-stream velocities will not, in general, be
uniform but will have some distribution. If the duct surrounding the coaxial stream is
not large compared with the jet discharge tube, the assumption of a coaxial stream of
infinite extent is not justified.

The equations can be made dimensionless in terms of the initial jet velocity, mass
fraction, density, and radius. When lower-case letters are used to denote dimensionless
quantities, the equations become

9 (our) + 2 (ovr) = 0 (7)
ox or

pu.a_u+ pva_u=.li. pEr a_u (8)
ox or r Or ar



pu91+pvg=li<_esriy_> (©)

where

pe=_FE (10)

P]- U].Rj

The dimensionless initial and boundary conditions are as follows:

u=1,y=1 0=r<1 x=0

(11)
u=u, y =y, r>1 x=0
M_9g,v=0,¥-0 r=0 x=0 (12)
or or
u-u,y-y, Tr—-* x=0 (13)

The density and mass fraction of component 1 can be related by the ideal gas law.
Thus,

m2-1+%

p=-_ ] (14)
Mj (my-1y+t
¥

where m, = M2 /Ml' For most applications, the initial jet will be pure component 1,
and the initial coaxial stream will be pure component 2. Then, Pg = My and the mole
fraction of component 1 is

(15)

A ""compatibility condition' that must be satisfied by the numerical solution can be
obtained by evaluating the momentum equation at the centerline; this condition provides
a check on mesh size. Thus, when 1'Hospital's rule is used to evaluate the indeterminate
form that arises,
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von Mises Transformation

(16)

The numerical integration can be facilitated by using the von Mises transformation
(ref. 7, p. 136) to convert from (r,x) to (,x) coordinates, in which the continuity equa-

tion is satisfied identically. Defining a stream function { such that

a_lpz pur
or
8_1’U= - pvr
X

and using the chain rule for differentiation

i =a +_a_ ?_lk =i -er_a.
axr axw aszaxr axw awx
Bl 2| W el
or |y aapxarx aa,bx

results in the following forms of the momentum and diffusion equations:

du _ 0 2 du
— = —|[p€e pur® —
ox oY oY

W _2 [ pe pyp2dy
ox oY Sct Y

In these coordinates the initial and boundary conditions are as follows:

(17)

(18)

(19)

(20)

(21)
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u=1,y=1 0=y <y, x=0
: (22)

u=u, ¥y=Y, tl/>ul/j x=0
9.9:0,6_y=0 d/:O x=0 (23)

oY oy
u=u,, ¥y=Y, Yy—~o x=0 (24)
The transformation obtained by integrating the first of equations (1'7)
r
Y= / pur dr (25)
0

can be used to determine .

Eddy Viscosity

It remains to specify the eddy viscosity. Two formulations are required: one for
the "'near'’ jet, before the centerline velocity begins to change, where the mixing is
more nearly planar; and the other for the ''far'’ jet, where the mixing is truly axisym-
metric. No attempt was made to make the eddy viscosity continuous at the point where
one formulation replaces the other.

Ting and Libby (ref. 6) have postulated relations between the eddy viscosities in
constant-density and variable-density flows. These relations can be written as

2
€= p_o e* (26)
p

2
()
€=e*(—°> 1 2L rdr 27)

for the near jet and

for the far jet. The asterisk refers to constant-density flows and Py, is2 reference
density for the flow. Since the reference density is not specified, it must be determined
by comparison of calculation and experiment. The value for the centerline eddy viscosity



can be obtained by expanding p in a Taylor series in r about r = 0, performing the
integration, and taking the limitas r - 0. In this way

e—poe 9
crai (28)

The constant-density eddy viscosity can be represented by the following equations
(ref. 7) in the near and far jets, respectively,

€* = klx(ue -1) (29)
and

€* = k2r1/2(ue - uQ) (30)

For a jet discharging into a quiescent ambient stream, k2 was found experimentally to
be 0.0256 (ref. 7). In terms of these expressions for eddy viscosity, the centerline
compatibility conditions for the near and far jets, respectively, become

2
du o 2
u B ] (u _1)_6_u (31)
¢'dx 1 e 9
P¢ or
¢
and
du p 2
u, —& = 2% r (u -u)—oé—u (32)
¢ o o¥1/2\% - Y¢ 5
P¢ / ar ¢

The unspecified reference density is presumably the centerline density, the coaxial-
stream density, or a combination of these. It was assumed that a simple linear combina-
tion was adequate. The reference density was thus taken to be

Py = Apg + Bpy (33)

where A and B are positive input constants. Restricting the sum of A and B to 1
bounds p, between p, and p,.



Calculations

In addition to the velocity, mass fraction, and mole fraction variations, several
other quantities are of interest. The turbulent momentum and mass fluxes are

7=-pedd (34)
or
p=-LE Wy (35)
Sct or

The width of the jet is characterized by its half radius (i.e., the point at which the local
velocity equals the average of the centerline and coaxial-stream velocities).

A gross measure of concentration that can be easily obtained experimentally is the
amount of light attenuated by an opaque substance. The attenuation can be related to
concentration if the optical properties of the components are known. This technique was
used in reference 8 with a bromine jet and a coaxial stream of air. This measure of
concentration can be calculated as follows:

dr (36)

Gas-Core Nuclear Reactor Calculations

For these calculations, it was assumed that the fuel instantly vaporizes upon enter-
ing the reactor. Heat-transfer calculations (ref. 3) were used to estimate average fuel
and propellant temperatures so that molecular weights and densities could be calculated.

The major fluid-mechanical figure of merit for the gas-core nuclear reactor is
the amount of fuel contained within a given volume

W = 27TP].Y].R].31 (37)

I= A.Z '4d/2pyr dr dx (38)

where



The calculations were performed for a coaxial stream infinite in extent, whereas in a
gaseous nuclear rocket the coaxial stream is, of course, bounded. Indeed, it is now
thought that the reactor radius will be only about twice the radius of the jet discharge
tube. However, the radial integration in equation (38) was terminated at the position
corresponding to a reactor wall in order to estimate the fuel content. Since the radial
velocity at this position is not zero in the calculations, the situation to which the calcu-
lations apply corresponds to a porous-wall reactor with this distribution of radial
velocity at the wall. Alternatively, if the integration is carried out to a constant
value corresponding to the initial reactor radius, axial mass flow is constant but the
reactor walls are no longer cylindrical. The two additional limitations in applying the
results of the calculations to gaseous nuclear reactor geometry are the use of the
boundary layer equations close to the jet exit and the absence of an end wall in the cal-
culations. Thus, the results of the calculations are approximations to reactor condi-
tions.

The amount of fuel present in a given volume can be compared with the minimum
and maximum amounts that could be present. Fuel content would be a minimum if the
jet and the coaxial stream were perfectly mixed before injection into the reactor.

Thus,

l d/2
= _1 .2
boin = 00y [ | rerax- Lt (39)
0

If the jet and the coaxial stream are composed of pure component 1 and pure component
2, respectively,

P, UJ-?TRjZ
Y, = 5 : > (40)
7D 2
so that
1
Yav = T 2 (41)
1+ peue(zd - 1)
Then,
_ 1
(0y),y = (42)
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and

1. =1 d’z 43)
81+u(ld2-1)
€\4

The amount of fuel would be a maximum if the initial jet were to remain a cylinder of
uniform concentration with the same radius as the jet discharge tube. In this case

1

l
- _1
Ima.x_/ /rdrdx—gl (44)
0 Y0

Numerical Method

In this section, a detailed analysis is presented of the numerical techniques used to
solve the equations of coaxial turbulent jet mixing. Figure 2 is a general flow diagram
for the numerical solution. The initial difficulty, from a numerical standpoint, is the
application of the boundary conditions u = u, and y = Yo 2s Y — . This difficulty was
overcome by defining a parameter y _, such thatas Y — ¢, not only do the functions
approach the boundary conditions, but also the derivatives of the functions are restricted
to fall below some arbitrarily small parameter. Furthermore, since Y can be a
numerically large value, a transformation was performed on the independent variable Y
to limit the range of integration from 0 to 1. An implicit finite-difference technique,
the Crank-Nicholson method (ref. 9), was employed to solve the system of parabolic
equations. Stability is inherent in such a scheme, and a high degree of accuracy can be
obtained by a judicious choice of interval size.

Let

Vo= (45)

Y
Voo
so that

2.1 3 (46)
Y, W

Applying this linear transformation to equations (20), (21), and the inverse of (25) results
in the following equations:

11
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m_1 3 fhepur?d (47)
0x 2 oY oY
Voo
? = 21 a—i (pe pur? %) (48)
X
VooSCy v
2 v dy
=2y, / & (49)
o P
Correspondingly, the initial conditions become
N
u=1 O=yg=_L
2y
_ > (50)
u=u, Y > 1
2y J
= 1
y=1 O=y= —
2y
°° (51)
i 1
Y=y, V¥>—
2y
The boundary conditions are transformed to
W_%_g F-o (52)
G
usug, y=y, W=1 (53)

Finite-Difference Equations

Consider a linear parabolic equation of the form

12




a—‘1——[A(‘,x) ] (54)
oy

Equations (47) and (48) can be considered of this form if

_ 2
A,W,%) = PE pur (55)
v2
and
_ 2
w2sc .

and if the values of the quantities in equations (55) and (56) are initially assumed to be
those at the previous axial position. By successively solving equation (54) and recomput-
ing A and A_ until no further change occurs, the correct values are obtained.

Now consider a net R, i, ] constructed on the region of interest. Let the subscript i
represent discrete points on the y-coordinate, and j discrete points on the x-
coordinate. The points of the Y -coordinate are constructed such that "Ui = (- 1)AyY
with i ranging from 1 to N. Thus, the notation 4 corresponds to the functional
value of u@i, x.). If forward differentiating is used over intervals in the x direction,

then equation (54) can be integrated between mesh points to yield

i+%
[i-l e P Sl /8 ( ) (A% (57)
2 ax dy 1+l,]'+l & i—l,j+1
2 2 2

If the integrand in equation (57) remains constant over the small interval AJ,

¢ PE -(a e (58)
111 ]+1 ( dw>1+5 J+; < dw) —E ]+5

Central differences are used for the right side of equation (58); values of A and u at
half intervals are approximated by the average over the whole interval; and the abbrevia-
tions

13



wr o= - (59)

are introduced. Substituting these resulis in equation (58) yields

- + -, AY +
Witi1, 541 ” <Wi Wt XE) 9,501 Vilie 1, je1

- e AY -t +
R A S 0 _(E “ ¥ - wi>ui,j - Wily,p,;  (60)

Equation (60) describes a linear set of equations for the unknowns u, Two

i,j+1°

additional equations are needed to complete the set in which i ranges from 1 to N.

Integrating equation (54) from i=1 to i= 11 and using the fact that (du/d?)v_0 =0
5 =

gives
_ AP )_ (4 du
(ul,j+1 ul:j)<2Ax> <Adw>ll 1)
2

Following the same procedure used to obtain equation (60), equation (61) can be ex-
pressed as follows:

B Y -\ D
<W1+2Ax)“i,1+1+“’1 Uy j41 =~ V1 U (ZAX 1>“i,3 (62)

Applying the boundary condition at ¥ =1 (i.e., i = N) by using equation (60) with i =N

and noting that Uni, j+1 = e yields

- + - AE _ + - AW _wt -
WNUN-1, 41 " <WN tWNt Z;)“N, j+1 = 2WNle - Wty g ‘<A_x N - WN) uy,j  (63)

The relations given by equations (60), (62), and (63) are written in matrix notation as

follows:

_BE].+  =d (64)

where the vectors l_l.] +1 are the unknown quantities. The vector d has the following
elements:

14
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- _ ot - ATD _wt
dl— Wluz,j (EA_}; wl)ui,j

= - wo AY -+ + . )

d; = Wil g j -(E Wy Wi>ui,j - Wil gy 1= 2,3, ..., N-1 > (65)
ourt - Ay _+ -

dN = ZWNue - WNUN-1,§ ~ (—— - Wy - wl\é N, g

-/

The tridiagonal matrix B, whose superdiagonal and subdiagonal elements are. w;' and

w{, respectively, has the following diagonal elements:

bex = -(wF AW_
11 <W1 2Ax>

bii=—<w'i"+ wi‘+%> i=2,3, ..., N-1% (66)
b = -[wh +w +g
NN <N N Ax)

The solution of equation (64) is directly obtained by Gaussian elimination of the subdiag-
onal elements and a back substitution to obtain u; +1°

Now that a method to solve equation (54) has been devised, the calculational pro-
cedure for solving equations (48) and (49) is as follows:

(1) Initially, at an axial length xj, use values of r, p, u, and y from xj-l to
compute Au and A_.

(2) Solve for Ui, and Viel.

(3) Recompute the coefficients A, and A_.

(4) Iterate between steps 2 and 3 until the change in Au and Ay is less than a
specified amount.

This procedure was programmed for the IBM 7094 II 7044 Direct Couple System in
FORTRAN IV. A listing of the program is given in appendix B. For most cases con-
sidered, a value of Ay = 1/200 and an initial Ax = 1073 gave satisfactory results.
However, at larger axial positions, larger values of Ax can be used because of the
decaying effects of the initial step profiles. An heuristic approach was used to alter Ax;
if the iteration procedure converged in three or less iterations, Ax was increased by
0.5 percent but was limited to a value of 0.4. Running time, of course, varied with

15



initial input; however, an average time of approximately 0.3 minute per unit x could be
expected.

Program Input and Output

The input required for a calculation consists of the following information:

(1) The initial ratio of coaxial-stream velocity to jet velocity u e

(2) The mass fraction of component 1 in the initial jet yj and in the initial coaxial
stream Ve

(3) The ratio of the molecular weight of component 2 to the molecular weight of com-
ponent 1 m,
(4) The constants in the eddy viscosity formulation k, and k2
(5) The turbulent Schmidt number Sc,
(6) The ratio of reactor diameter to jet radius d
(7) The constants in the reference density formulation A and B
(8) The axial positions at which output is desired x
The output listing reproduces the input and, thereafter, at each axial position, gives
(1) Axial position x
(2) Eddy viscosity €
(3) The product of density and eddy viscosity pe
(4) The following information for axial velocity, mass fraction, and mole fraction:
(Centerline value - Coaxial-stream value)/(1 - Coaxial-stream value)
The radial variations with stream function, also converted to radial position r, and the
ratio of radial position to half radius r/r1 /2 for axial velocity, mass fraction, and
mole fraction are provided in the following form:

(Local value - Ambient stream value)
(Centerline value - Ambient stream value)

The following quantities are also listed:
(1) Momentum flux normalized with the square of the centerline velocity 'r/u%_
(2) Mass flux normalized with the product of centerline velocity and mass fraction
/gy
(3) Eddy viscosity and the product of density and eddy viscosity divided by their
centerline values €/€¢_ and pe/(p€)¢_
Both sides of the centerline compatibility condition are printed next, followed by the

16



values of velocity and density at the largest stream function position in the calculation.
Finally, the "'line of sight'" concentration c*, the dimensionless mass of component 1 I,
and the ratio of mass of component 1 to initial mass (¢ ratio) are listed.

RESULTS AND DISCUSSION

Sample results from the computer program are presented to illustrate the mixing of
a heavy, slow-moving jet and a lighter, faster-moving coaxial stream. First, however,
a limiting case is discussed.

Schlichting (ref. 7, p. 607) presents a similarity solution for an isothermal, tur-
bulent free jet mixing with a quiescent ambient stream of the same composition that is
valid far downstream. Schlichting's value for the proportionality constant k2 in the
far-jet eddy viscosity formulation was adopted in order that the numerical solution repre-
sent this limiting case. The value of the constant of proportionality k1 in the near-jet
eddy viscosity formulation was chosen so that the numerical solution agreed with the
similarity solution far downstream.

Figure 3(a) shows a comparison of centerline velocity and half radius calculated
from the similarity solution and the results of the numerical solution using two different
values of kl‘ A value of k1 = 0. 75><10'3 leads to good agreement downstream and was
therefore used in subsequent calculations. Radial velocity profiles rapidly change from
the initial step profile and gradually merge into the similarity profile. Figure 3(b)
illustrates that at an axial position of 16 jet radii the profile is almost similar, whereas
at 50 jet radii the agreement is essentially exact. In these and subsequent calculations,
the near jet formulation for eddy viscosity was used until (“¢_ - ue)/(l - ue) =0.99;
thereafter the far jet formulation was used. The calculation was repeated for 0.98 in
order to see whether the particular choice of 0.99 was critical. Although there was
some difference initially, the difference between the two solutions was soon indistin-
guishable.

Choosing the proportionality constants in the eddy viscosity formulations by the
method just discussed leads to a discontinuity in eddy viscosity at the axial position
where one formulation replaces the other. It was felt that agreement with the similarity
solution was more important than a continuous variation of eddy viscosity. Figures 4
and 5 show typical calculations of the axial and radial variations of eddy viscosity and
the product of density and eddy viscosity, respectively. In both cases, the radial
variation is much greater in the near jet than farther downstream. The product of
density and eddy viscosity varies less in the radial direction than does eddy viscosity.

The effects of two different initial velocity ratios on velocity and mass fraction
profiles are illustrated in figures 6 and 7. The higher velocity ratio, of course, re-
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sults in a more rapid decay in centerline values and a narrower jet. In all calculations,
the generally accepted value of 0.7 (ref. 5, p. 422) was used for the turbulent Schmidt
number.

The effects of two different initial density ratios on velocity and mass fraction pro-
files are illustrated in figures 8 and 9. As expected, the lighter jet decays faster and
results in a narrower jet.

The influence of reference density on velocity and mass fraction profiles are shown
in figures 10 and 11. The formulation based on centerline density leads to much more
rapid decay of centerline values and to a narrower jet than does the formulation based on
ambient stream density. The formulation based equally on centerline and ambient
stream densities falls between these results. These figures demonstrate that it will be
necessary to determine experimentally if any of these formulations are adequate.

Figures 12 and 13 show the effect of initial velocity ratio and initial density ratio

on the mass of the major jet component contained within a given volume. The maximum
and minimum values are included for comparison.

CONCLUDING REMARKS

A computer program to describe isothermal, turbulent jet mixing of two gases was
written using the axisymmetric forms of the boundary layer momentum and diffusion
equations. The coaxial stream is considered to be infinite in extent. Eddy viscosity is
represented by an expression that provides for both radial and axial variation. Typical
running time is less than 1 minute to produce time-averaged velocity and mass fraction
distributions.

Experimental data are required for further progress. Constant-density experiments
at large initial velocity ratios will determine if the numerical value of k2 used is
appropriate. If not, the large inifial velocity ratio data can be used to determine a new
value. The value of k1 can also be obtained from the same experiments. With the
values of kq and k2 determined, variable-density experiments at large velocity ratios
can be used to determine a suitable reference density in the eddy viscosity formulations.

In the comparison of computer results and experimental jet-mixing data, the initial
conditions on the equations may have to be modified to account for the finite wall thick-
ness of the jet discharge tube and for the distribution of velocities in the initial jet and.
the coaxial stream. For gas-core nuclear reactor calculations, the absence of an end-
wall boundary condition is probably a serious restriction. In addition, the assumption of
constant pressure and the use of the boundary layer equations near the jet exit are
approximations. These restrictions can be removed by using the full Navier-Stokes
equations rather than the boundary layer equations. However, the problem of turbulence
and a method to characterize an eddy viscosity remain.

18
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For unbounded turbulent jet mixing, the computer program provides a rapid solution
that reduces to the similarity solution when the density is constant and the coaxial
stream is quiescent. Improved values for the proportionality constants in the eddy
viscosity formulations, or an entirely new expression, can easily be incorporated.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 8, 1967,
122-28-02-16-22.
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APPENDIX A

SYMBOLS
A,B constants in reference density formula
Au’Ay quantities defined by eqs. (55) and (56)
B coefficient matrix
b elements of B matrix
C mole fraction of component 1
c dimensionless mole fraction of component 1, C /Cj
c* line of sight concentration
D reactor diameter
d dimensionless reactor diameter, D/Rj ; elements of d vector
d vector defined by eqs. (65)
1 [d/2
I dimensionless mass of component 1, -/0‘ ./0‘ pyr dr dx
klk2 constants in eddy viscosity formulations
reactor length
4 dimensionless reactor length, L/Rj
M molecular weight
m dimensionless molecular weight, M/M1
N upper limit of i
R radial position; finite difference net
r

dimensionless radial position, R/Rj
T/ dimensionless half radius (i.e., position at which (u - ug)/(1 - u,) = 1/2)

Sc turbulent Schmidt number

t
U axial velocity
u dimensionless axial velocity, U/Uj
a velocity vector
Vv radial velocity

20



v dimensionless radial velocity, V/ Uj
W amount of fuel contained within a given volume, 27erYjRJ?I
w abbreviation defined by eq. (59)

X axial position

b4 dimensionless axial position, X/Rj

Y mass fraction of component 1

y dimensionless mass fraction of component 1, Y/Yj
E eddy viscosity

€ dimensionless eddy viscosity, E/U].Rj

€* dimensionless constant-density eddy viscosity

P density

p dimensionless density, P/Pj

Y stream function

b normalized stream function, Y/,

Yo maximum value of

Subscripts:

av average

¢ centerline

e coaxial stream

i point on ¢ coordinate

j jet; point on x coordinate for numerical solution
max maximum

min minimum

Y reference

1 major component of jet

2 major component of coaxial stream

-
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APPENDIX B

PROGRAM LISTING

1D YED1581 C A TODD COAXIAL FLOW
A COMPUTER PROGRAM FOR CALCULATING ISOTHERMAL
TURBULENT JET MIXING OF TWO GASES

SYMB0OL DEFINITION

AP THE A COEFF. FOR THE DIFFUSION EQN.

AU THE A COEFF, FOR THE MOMENTUM EON.

BP THE B COEFF, FOR THE DIFFUSION EQN

BU THE B COEFF. FOR THE MOMENTUM EQON.

DPSI THE INTERVAL SIZE IN THE PSI DIRECTION

DX THE INTERVAL STZE IN THE X DIRECTION

EA COEFF. A, FDR REFERENCE DENSITY CALCULATION
EB COEFF. 8By FOR REFERENCE DENSITY CALCULATION
EPS RHO TIMES THE EDDY VISCOSITY

1 INDEX VARIABLE

IHALF VALUE OF I WHEN R=R-1/2
ITER THE ITERATION COUNTER

J INDEX VARIABLE
K A COUNTER TO CONTROL THE OUTPUT
KGO A LOGICAL VARIABLE TO CONTROL THE CALCULATION OF THE

CONTAINMENT FACTOR
NCOPY THE NUMBERS OF COPIES WANTED—— NORMALLY 1
NPTS THE NUMBER OF POINTS IN THE PSI DIRECTION
NPTSX THE NUMBER OF X VALUES TO BE OUTPUTED
NORMPO THE EUCLIDIAN NORM OF RHO AT X-DX
NORMP2 THE EUCLIDIAN NORM OF RHO AT X
NORMUO THE EUCLIDIAN NDRM OF U AT X-DX
NORMU2 THE EUCLIDIAN NORM OF U AT X
PMAX PSI-INFINITY AT X
PMAXOD PSI-INFINITY AT X-DX
PSI THE INDEPENDENT VARIABLE
PSIMO PSI-1/2 AT X-DX
PSIM1  PSI-1/2 AT X
PTS THE NUMBER OF INTERVALS IN THE PSI DIRECTION
PTSX THE NUMBER OF OUTPUT X'S
PZERO THE PSI-RATIO
RHALFO R-1/2 AT X-DX
RHOE THE EDGE DENSITY
RHOR REFERENCE DENSITY
RHOO VALUE OF RHO AT X-DX
RHO1 A GUESSED VALUE OF RHO AT X
RHOZ2 A COMPUTED VALUE OF RHO AT X

RO VALUE OF R AT X-DX

R1 A GUESSED VALUE OF R AT X

R2 A COMPUTED VALUE OF R AT X

SC THE TURBULENT SCHMIDT NUMBER

SD A DIAMETER

SM2 A MOLECULAR WEIGHT RATIO

SUM TEMPORARY STORAGE

SUMI TEMPORARY STORAGE

TOL THE TOLERANCE TO TERMINATE THE ITERATION
UE THE EDGE VELOCITY

uo U AT X-DX

uM INTERPODLATED U AT X-DX

Ul A GUESSED VALUE OF U AT X

Uz A COMPUTED VALUE OF U AT X

X1 THE CONTAINMENT FACTOR

X0 THE PREVIOUS VALUE OF THE INDEPENDENT VARIABLE, X
X1 THE CURRENT VALUE OF X
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[aXelaEeNe]

XP

1 READ{54400)UEsYJyYEsSM24XK1¢XK2,4SCyTOLsPTS,PTSX

32

9969
9970

XK1
XK2 A TURBULENCE FACTOR FOR EDDY V
XM A CONTROL VARIABLE

ISCOSITY IN THE FAR JET

XM=0, NORMAL INPUT
XM=1. NORMAL INPUT PLUS RESTART DUMP CARDS
XPCH VALUES OF X TO BE OUTPUTED
YE THE EDGE VALUE OF Y
YJ THE JET VALUE OF Y
YM INTERPOLATED Y AT X-DX
Y0 VALUE DOF Y AT X-DX
Y1 GUESSED Y AT X
Y2 COMPUTED Y AT X
INPUT
CARD 1-———FORMAT 8F10.X
UE YJ YE SM2 XK1 XK2
CARD 2———-—FORMAT 8F10.X
PTS PTSX PMAX SD EA EB
CARD 3+-——FDORMAT BF10.X
CH(1) XPCH(2) - ETC —-——

COMMON/DATUM/ RO,UD0,RHOQ0,PST,

NPTSyUEyYJyYE,SM2, XK1,

A TURBULENCE FACTOR FOR EDDY VISCOSITY IN THE NEAR JET

sC

XM

1XK24SCyRHOE4sDPSTyYO4RHO2,U24R2yPSIML4RHOE]L yRHALF14 X1y IHALF,Y2

COMMON RHOR,EPS(500)

DIMENSION UD(500),U1(500),U2(500),RHOD(500),RHO1(500),RHO2(500),
1R (500)4R1(500)4R2(500),4Vv1(500},Vv(500),BU(500),

2BP{500) 4 XPCH(50)4PSIPCH(50) s PSIH
DIMENSION YO(500),Y1{500),Y2(500)
DIMENSION YM(500),UM(500)

REAL NORMUO,NORMUL ,NORMUZ2 s NORMPO »NOR

500)

MP1,NORMP2

SUB{XLeYLlsX24Y29X)=(X=X1}/(X2-X1)*(Y2-Y1)}+Y1l

COMMON X0O(1),PMAX ,NORMUO,NORMPD,DX
READ ALL REQUIRED INPUT DATA AND INIT
STARTING DXe

1y XM, TIB

NCOPY=TIB

M=XM

PMAXOD=PMAX

NPTS=PTS+1.

NPTSX=PTSX

T=SM2-1.
RHOE={YJ*T+1le )/ (YE*T+1a4)
DPSI=1./PTS

K=1

READ(54400) (XPCH(I)sI=1,NPTSX)
X1=0.

DO 32 I=14NCOPY

CALL INITAL(M)

KG(O=1

IF(SM2.GT.1.) KGO=2
WRITE(64471) SD LEA,EB
IF(M,NE.O) GO TO 100

DO 9969 I=14NPTS

J=1

IF(RO(I).GE.SD/2.) GD TO 9970
PZERO=PSI(J)

¢ XZyRHALFD4XI oK HPZERD

TALIZE VALUES OF

yPMAX ,SD

+EALEB

TOL
NCOPY

XPCH(8)

23
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[aNaNel

s NeNalel

aooo0oon

471
400
100

S

10

101

102

103

104

50

90

12

14
490

491

15

IF(J.EQ«NPTS) PZERO=PZERO+RHUERUE/24%(SD*%2/4,—RO(NPTS)*%2}
1/PMAX

FORMAT(2HKD3G134552X91HA9G134592X91HByG1345 )
FORMAT(8F10.7)

NORMP1=MORMPO

NORMU1 =NORMUO

PMAX=PMAXDD

ET FIRST GUESS OF(X+DX)=U(X),Y(X+DX)=Y(X)4,AND R(X+DX)=R(X)

DO 10 I=1,NPTS
RHOL{(1)=RHOD(I)}
ul(I)=uo(1)
YL(I)=YO(I)
RL(I)=RO(I)
X1=X0+DX

ITER=0
NPTS1=NPTS

IF PSI-MAX HAS CHANGED INTERPOLATE VECTORS TO CORRESPOND
TO NEW LENGTH,

DO 102 I=1,NPTS

YM{I)=Y0(I)

UM{I)=UD(I)

IF{PMAX.EQ.PMAXOD) GO TO 50

DD 103 I=14NPTS

VI(I}Y=PSI(1)*PMAX

VII)=PSI(I)*PMAXDD

DO 104 I=14NPTS

CALL SINTP{V4UDsNPTS,VI(I),UM(I)})

CALL SINTP(V,YOsNPTSeVLI(T),YM(1))
COMPUTE PSI-MAX AND PSI-1/2 AND RHO-EPSILON

TEST=(U1({1)-UE)/(1.-UE)
RHOR=EA*RHO1 {1 }+EB*RHOE
IF(TESTeLE«.99)G0 TO 12
RHOE1=XKL*X1%ABS{UE-1.)
IHALF=0

DU 90 I=1,NPTS
EPS(I1)=(RHOR/RHOL (]} )%**2%RHOEL
GO TO 61

TEST=.5%(UE+UL (1))
IF(UE.GT.1.) GO TO 490

DO 14 I=1,4NPTS

THALF=1

IF{UL(1).GE.TEST) GO TO 14
GD TO 15

CONTINUE

DO 491 I=1,NPTS

THALF=1

IF(UL(I).LE.TEST) GO TO 491
G0 TO 15

CONTINUE

COMPUTE VALUES OF AU,AP+BU,AND BP AND SOLVE FOR NEXT
APPROXIMATION OF U,Y,RHO4AND R,

DO 456 I=1,1HALF



[aXaNel

e XaXaNel

456

13
17

62
61

455

7777

18

19

11

7070
7071

461

462
463

460

V{I)=PMAX/UL(T1)
CALL FNTGRL(TIHALF+DPSI4V.V1)
RHALF1=SQRT(2./RHOR *V1I(IHALF))

RHOE1=XK2*PRHALF1

*ABS(UE-UL(1))

DO 17 I=14NPTS
V(I)=PMAX/UL(I)

CALL FNTGRL(NPTS,DPSI,V,yV1l)
EPS{1)=RHOE1%RHOR/RHOl{1)
DO 62 I=2,NPTS

EPS{1)=2.%RHOR*RHOEL/RHOL (1) *%2/R1L(T)*%2%V1(1)

DO 455 I=14NPTS

Au=1.
AP=1.

BU(I)=EPS{I1)#RHOL(I)*%2%UL{T)*R1{}%*2
BU(I)=BUCI)/PMAX#*2
BP(I)=BU(I)/SC

CALL SOLVE(AU,BU,NPTS,UE,U2,NORMU2,+DX,DPST UM}
CALL SOLVE(AP+BPyNPTS,YE,Y2,MORMP2yDXsDPSI,YM)

T=SM2-1.
Tl=1l./YJ
DO 7777 I=14NPTS
RHOZ(I)=(T+TL)/(Y2(1}*T +T1)
NPTS2=NPTS1
DD 18 I1=1,NPTS2
VII)=PMAX/RHO2(I)/U2(1)
CALL FNTGRL(NPTS24DPSI,V,sV1)
DO 19 I=1,NPTS2
R2(1)=SQRT(2. #V1(1))

DO 11

I=1

sNPTS1

V(I)=(UL{I)~UE)/(1l.-UE)
CALL FMTGRL(NPTS14DPST,4V,V1)
DO 7070 I=14NPTS

I1=1I

TF(V1{(I).GT..495%PMAX) GO TO 7071
CONTINUE
PSIM1=PSI(Il)
SUMI=0.
DO 460 1=2.NPTS

GD TO (461+462) KGO
SUM=Y2(1-1)

GO TD 463

SUM=1,.,-Y2(I-1)
IF(R2(1).GT«SD/2.) GO TO 460

SUMI=SUMI+SUM*RHOZ2(I-1)%R2(I~-1)*(R2(I)-R2(I-1))

CONTINUE

CHECK TO SEE IF CONVERGENCE CRITERIA HAS BEEN MET.

IF(ABS({ {NORMU2-NORMUL1}/NORMUZ2).GT.TOL) GO TO 20
IF(ABS{{NORMP2-NORMP1)}/NORMP2).GT.TOL) GO TO 20

TEST=(U2(NPTS)-U2(NPTS~1))/DPSI
IF(TESTW.GT,.001*PMAX) GO TO 70
DEBUG X1,DX,PMAX

DEBUG (PST(I)sI=1,NPTS,20)

DEBUG (R2

DEBUG

(uz

(I),I=1,NPTS,ZO)
(I)yI=14NPTS,20)

CONVERGENCE CRITERIA HAS BEEN METY
CHECK WHETHER DX CAN BE INCREASED

25



26

ao0o

OO0

[aXaEe]

[aNgXe]

I

3333

60

21

20

22

30

9971
9972

CALL TIMLFT(TIML)}
F THE TIME REMAINING IS LESS THAN .1 MIN, OUMP FOR RESTART.

IF(TIM1/3600.4GTesl}) GO TO 3333
XZ=K

CALL BCDUMP(XD(11),X0(8})

CALL BCDUMP(PSI(1)4PSI(NPTS))
CALL BCDUMP{RD(1),RO(NPTS))
CALL BCDUMP(UD(1),UD(NPTS))
CALL BCDUMP(RHOD(1),RHOO(NPTS))
CALL BCDUMP(YD(1),YO(NPTS))
STOP

IF ITER IS LESS THAN 3, INCREASE DX.

IF{ITER,LT.3) DX=1.05%DX
IF{DXeGTeoed) DX=o4
XI=XI+DX*SUMI
SHOULD WE PUNCH OUT AT THIS X

TF(X1+GT«XPCH(K}) GO 7O 30

X0=X1
PMAXOD=PMAX
NORMUO=NORMUZ
NORMPO=NORMP2
RHALFO=RHALF1
PSIMO=PSIMI1
RHOEO=RHOE1

DD 21 I=1,4NPTS
uD(I)=02(1)
RHOO(I)=RHO2(1)
YO{i)=Y2(1)
RO(INI=R2(T)

GO TO 100

MO CONVERGENCE

NORMU1=NORMU2
NORMP1=NORMPZ2
ITER=1TER+1

DO 22 I=14NPTS
ulcrr=u2(1)
RHOLl([)=RHO2()
YL(I)=Y2(1)
RI(I)=R2(1)

GO 70 50

PUNCH OUTPUT

DO 31 1=1,NCOPY

CALL DUTPUT{XPCH(K))

WRITE(6,470) X1

DD 9971 I=1,NPTS

J=1

IF(R2(1).6GE.SD/2.) GO TO 9972

TEST=PSI(J)
IF{JeEQeNPTS)TEST=TEST+RHOE*UE/ 24 * (SD**2/4,-R2(NPTS)*%2)
1/PHMAX



482
479
470

70

RATP=TEST/PZEROD
WRITE(6,479) RATP
WRITE(6,482) SUMI
FORMAT(5H I(X)42XyG13,5 )
FORMAT(10HKPST—RATIO:2X+Glle4)
FORMAT(2HKI,G13,5)
K=K+1
IF(X1 «LTXPCHIK))}GD TO 60
GO TO 1

MUST CHANGE PSI-INF

PMAX=PMAX+2,
GO TO 101
END

$IBFTC SOLVE

c

c
c
C

A ROUTINE TO SOLVE A PARABOLIC EQUATION BY THE CRANK-NICHOLSONS

ALGORITHM,

SUBROUTINE SOLVE{A+BsNyHMAXsHyNORMH,DX,DPS1,HO)
REAL NORMH
DIMENSION B{500)»H(500),SB{(500),+SD(500)},HO(500),SA(500),
1SC(500) yWP({500),WM(500)
N1=N-1
SA(1)=0.
T=A/4./DPSI
T1=DPST/DX
DD 5 I=2,N
WM(L)=T*(B(I}+B(I-1)}
DO 6 I=1,N1
WP{I)=T*(B(I+1)}+B(I))
SB{1)==(WP(1)+T1/2.)
SC(1)=WwP(1)
SDUYL)=(WP{1)-T1/2.)*HO(1)-WP(1)*HO(2)
N=N=-1
SAIN)=WM(N)
SBIN)=~(WP(N)+WM(N)}+T1)
SDIN)==1 o #WP {N) &HMAX~WMIN) *HO(N—-1)—{ —WM(N)+T1-WP{N) )*HO(N)
1-WP(N}*HO(N+1)
N1=N-1
DO 7 I=24N1
SA(T)=WM(T)
SC(I)=WP(I)
SBLI)=~(WM{TI}+WP(I)+T1)
SDETY==WM(T}*HO(I=1)=WP(I}*HO(I+1)=(TL-WM(I)=WP(1))*HO(I)
DO 2 I=2.N
SB{I)=SB(I)-SA(I)/SB(I-1) *SC(I-1)
SD(I)=SD(I)-SA(I)*SD(I-1}/SB(I-1)
H{N}=SD(N)/SB(N)
NORMH=H(N) *%2
DO 3 I=14N1
J=N=1
H(J)=(SD(J)=SC(J)*H(J+1})/SB(J)
NORMH=NORMH+H{(J) %*x2
N=N+1
H{N)}=HMAX
NORMH=SQRT (NORMH)
RETURN
END

$IBFTC QUTPUT
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28

91

51
52
50

11

521

SUBROUTINE OUTPUT(XX)

COMMON/DATUM/ ROyUD4POyPSIyN1 UE,YJsYEySM24 XK1 ¢XK2ySCyRHOE,DPSI,
1Y0yP24U24R24PM14PELsRH29X1sIH,Y2

COMMON RHOR,EPS{500)

DIMENSION P2(500),U2(500),R2(500),P0(500),U0(500}),R0O(500),
1PST{500),PSIP(500),PX(500),UX(500),RX(500),ROX{(500)4URAT(500),
2YRAT(500),POP(500) 4 TAU(500), XMU(500) ,YO(500),YX(500),Y2(500)

DIMENSION ROX1(500)4+EP(500),RHOEP(500)

COMMON Z21,PMO

SUB(XLsY19X2,Y2,X)=(X=X1)/(X2-X1)*{Y2-Y1)}+Y]1

PMA=SUB ( X0y PMO4X149PM1,XX)

DO 91 I=14N1
PSIP{I)=PSI(1)*PMO

DPSI=PSIP(2)—-PSIP{(1)

DO 51 I=14N1

TH=1

T=(U2(I)-UE}/(U2(1)-UE)

IF(T.GT..5) GO TO 51

GO 70 52

CONTINUE

RH1=R2 (1H)

PMX=1.

SQT=1.

RHOEX=PE1 /SQT

RHOX=SUB{X0sPO(1)4X14P2(1)4XX)

IF(RHOE.NE«1ls)
1RHOX=(RHOX=~RHOE )}/ {1 .—RHOE)

UOX=SUB (X0yUO(1)4X1,U2(1)4XX)

URATX=(UOX-UE)/ (1.-UE)}

T=0.

[F(SMZeNEale) T=1l./YJd/(SM2-1.)

YOX=SUB(XO0,Y0(1)sXLy¥Y2(1),XX)

YRATX=0.

IFIYE.NE.1s) YRATX=(YOX-YE)/(1l.-YE)

W=SM2-1.

Wl=1l./YJ

DO 1 I=1,N1
YX{I)=SUB(XD»YO(I)yX1sY2(I)yXX)
PACTI)=(W+W1 )/ (YX{T)*W+W1)
UX{I)=SUB(X0,UB(T}),X1,U2(1)sXX)
RX(I)=SUB(XO,RO(T1}yX14R2(I)sXX)
ROX(1)=0.

IF(IH.NE.O)

1ROX(T)=RX{1}/RHL
URAT(I)=(UX(I)~-UE)/(UDX-UE)
XMUCT)=YXCT)*PX(T)#UX (T )%*2
POP(1)=0.

IF(RHOE.NE.1.)
1 POP(IN=(PX(I)—RHDE)}/(PX(1)~RHOE)
YRAT(I)=0.

IF(YELNELYJ) YRAT(I)=(YX(I}~YE)/(YOX-YE)
ROX1(I)=RX(I)/XX

CONTINUE

DO 521 I=1,4N1

EP(I)=EPS(I)/EPS(1)
RHOEP(I)=PX(T)*EPS(I)/PX(1)/EPS(1)
TAU(1)=PMXx{UX{2)-UX{1})/DPS1
TAU(NI)Y=PMX*(UX(N1)=UX(N1-1))/DPSI
XMUGL)Y=(YX(2)~YX{1))/DPSI



2

XMUINI)=(YX{NL)-YX{(N1=-1))/DPSI
N3=N1-1

DO 2 I=2,4N3

TAUCT ) =PMX=(UX(I+1)-UX(1-1))/2./DPSI
XMUCT)=(YX(I+1)-YX{1-1))/2./DPSI

DO 3 I=1,N1
T=-RHOEX#PX{I)*UX(I)*RX(1I) /507
TAU(T)=TAU(T)I*T /UDX**2

3 XMUCTI)}=XMU{I)*T/SC /YOX/UDX

32

6
7

&4

30

31

600

601

66
602

520

500

RHUEPX=PX(1)*EPS(1)
RHX=RH1
WRITE(6,500) XXsURATXyYRATXyRHOX,EPS(1)sRHOEPX JRHX
IMOD=10
K=1
TEST=PSIHF
ISTRT=1
DO 6 I=ISTRT4N1
N=1
IF(PSIP(I)«GT.TEST) GO 1O 7
CONTINUE
MOD=N/IMOD
IF(MDOD.LT.1) MOD=1
TF(KeEQe2) N=N+2
DO & I=1STRT,N,MOD
RXXX=RX{1}/5QT
IF{SM2.EN.1.)XMU(1)=0.
T5=YX(I)*PX(I)}
WRITE(645501) PSIP(1)4RXXXsROX(I)4URAT(I},YRAT(I),POP(1),TAU(TI)
19y XMU(I)EP(I),RHOEP(I) » 15
GO TO (30,31),4K
ISTRT=N+1
TEST=PMA
IMDD=10
K=2
GO TO 32
D1= UOX*(U2(1)~-U0(1))/(X1-X0) #PX(1)
D2=44/RX(2)%%2%¥RHOEX*(UX(2)-UX(1)}) *RHOR
T=(UOX—-UE)/ (1.-UE)
IF(T.6Tee99) D1=D1%*PX(1)
IF(T.6GT.e99) D2=D2%RHOR
WRITE(6,600) D1l,D2
FORMAT(32HKCENTERL INE COMPATIBILITY VALUES 2G15.5 )
WRITE(64601) UX{N1),PX{N1)
FORMAT(7H UMAX= G13.543Xy9HRHO-MAX= G13.5 )
N3=N1-1
CSTAR=0.
IF{RHOE.EQ.1.) GO TO 602
DO 66 I=14N3
DR=RX(I+1)-RX(I)
CSTAR=CSTAR+{PX(I)-RHOE)/ (1 .~-RHOE)*DR
CONTINUE
WRITE(6,520) CSTAR
FORMAT(3HKC*5G1345)
K=1
RETURN
FORMAT (19H1 AXTAL-LENGTHyX9G1lle4 95X 4H{UD-UE)/(1-UE),Gll.4,
15X9 L4H(YO~YE)/{1~YE)yG1llaby 14Xy 4H(PO-PE)/{1-PE)4Glle4 /
213X 46HEPS—0 $G1l1a4912Xy 7THRHOEPSO3G1lle4914X95HR-1/24Glle4y12X,
37/
4 23K U-RATIO=(U-UE)/(UD-UE)/ 23H Y-RATIO=(Y-YE)/(YO-YE) /

29



30

523H P-RATIO=(P~PE)/(PD-PE) /

69y26H TAU NORMALIZED BY 1/U0%%2 / 25H MU NORMALIZED BY 1/U0/Y0 //
54H PSIa7TX91lHR9y10Xy9HR/ (R—=1/2) 42Xy THU-RATID,4Xy THY-RATIO4X,

69HP~RATIO 92Xy3HTAU.8X42HMU,9X,
7 12HEPS/(EPS-0 ) 41X,17HRHOEPS/(RHOEPS-0) v
22X 9 5HRHOXY )
501 FORMAT{10G11l.4y6X3Glle4)
END
$IBFTC INITAL
SUBROUTINE INITAL (M)

COMMON/DATUM/ R,UsRHDO,PSI, NyUEsYJ9YE9SM24 XK1y XK24SC,RHOE,
1D0PSI,LYO

DIMENSION R(500),U(500),RHO{500)yPSI(500),v(500),Vv1{(500) ,YO(500)
REAL NU,NP

CUMMON RHORLEPS(500)
COMMON X(1)9PMOyNUNP DXy XKsRHFO$XI 4K yPZERO
IF(M,EQ.1) GO TO 100

T=(SM2=1.)}*YJ
PSI{1)=0.
NU=0.
NP=0.
DO 1 [=2,N
1 PSI(I)=PSI(I-1)+DPSI
DO 8 I=1,4N
IF(PSI(I}eLE.s5/PMO) GO TO 4
U(I}=UE
RHO( I )=RHOE
GO T0 3
4 Uli)=1.
RHO(I)=1.
3 NU=NU+U(T)*%2
Yo(I)=1.
IF{T«NELO.)
NP=NP+YO(I}*
8 CONTINUE
NU=SQRT{NU)
NP=SQRT(NP)
20 CONTINUE
5t DO 5 I=1,N
5 V(I1)=24/RHO(I)/U(]) *PMO
CALL FNTGRL(NyDPSI4VsVl)
DO 7 I=1,4N
7 R{I)=SQART(V1(I})
RHF0=0.
IF(M.EGs2) RETURN
X=0
DX=1.E-2
GO TO 101
100 CALL BCREAD(X{1),X(9))
CALL BCREAD(PSI(1)4PSI(N})
CALL BCREAD(R(1}4R(N))
CALL BCREAD(U(1),U(N))
CALL BCREAD(RHO(1),RHO(N))
CALL BCREAD(YO(1),Y0(N))
PMO=X (2}
NU=X{(3)
NP=X(4}
DX=X{(5)
K=X{6)

YOUI)=(YJ/RHO(T ) *(1e+1/T)=YI/T)/YJ
*2
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101

6

500

501

$IBFT

-

100

RHFO=X(7)

XI=X{(8)

PZERO=X(9)

DEBUG (X(I),41=1,8)

DEBUG (YO(I)yI=14N)}

WRITE (69500)UEsYJsYESM24XK1¢XK2,4SC *X
SQAT=SQRT(PMO)

MOD=N/20

DO 6 I=1,N,MOD

PSIP=PSI(I) *PMO

RP=R(I)

WRITE(6+501)PSIP4RP,U(TI)RHO(I)

RETURN

FORMAT (1H1,430Xy30HINPUT FOR TURBULENT JET MIXING //
17X92HUE 3Gl ab s TX92HYI9Gllaby TX92HYE)GLllabyTX92HM25GL1eb4y7Xy2HK],
2611 e% 9 TX92HK2 3Gl o4/ TX92HSC +GLY 04 //
330X424HINITIAL PROFILES FOR X= Gll.4 //

54H PSTy9Xy1HR412X41HU412Xy3HRHO )

FORMAT(4G13.5)

END
C SINTP

SUBROUTINE SINTP(XyYyNyXl,yY1l)

DIMENSION X(500),Y(500)

DO 1 I=1,4N

K =1

IF (X1.GT.X(I}) GO TO 1

IF (X1.EQeX(1)) GO TO 2

IF (X1.bLTeX{I)) GO TO 3

CONTINUE

Y1 = Y(K)

GO TO 100

IF (KeEQel) K=2

IF (KJEQeN)} K=N-1

IF(Y{(K=-1).NE.Y(K)) GO TO 5

Yl=Y(K)

RETURN

CONTINUE

WL = (X1=X{K)) *{X1-X{K+1))/{X(K=1)}-X(K) )}/ (X{K=1)=X{K+1})
W2 = (X1~X(K=1))*{(X1-X{K+1)})/(X{K)=X(K=1)}/(X(K)=X(K+1))
W3 = (X1=X{K=-1)})}*{X1=X{K))/(X(K+1)=X{K=1))/{(X(K+1)}=X{K))
Y1 = Y{(K=1)*W1+Y{(K)*W2+Y(K+1)*W3

RETURN

END
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